
Data Preparation: From Raw to Revamped!

David Martin

2/26/2020

Before we get started

Set R Global Options

1. Go to Tools -> Global Options -> Code -> Make sure Soft-Wrap R Source Files is checked.

2. Go to Tools -> Global Options -> RMarkdown -> Make sure Show Output Inline for all
RMarkdown Documents is unchecked.

Today’s class

Today we are going to walk through how you go from disparate datasets to one unified dataset. In previous
weeks we’ve worked with a dataset that was complete and clean, however, it did not start that way. This
dataset was actually pulled together from three separate sources.

Albemarle County Office of Geographic Data Services

http://www.albemarle.org/department.asp?department=gds&relpage=3914Parcels

Real Estate Information - Parcel Level Data

https://gisweb.albemarle.org/gisdata/CAMA/GIS_View_Redacted_ParcelInfo_TXT.zip

This file contains information about the parcel itself such as owner information, deed acreage value, and
assessed value.

Real Estate Information - Card Level Data

Card Level Data refers to property information organized by particular residential dwellings or commercial
units (e.g. building details and outbuilding information) on a given property. These tables can be linked to
the Parcel Level Data table (ParcelID field) via the TMP field.

Card Level Data: https://gisweb.albemarle.org/gisdata/CAMA/GIS_CardLevelData_new_TXT.zip This
file includes data such as year built, finished square footage, number of rooms, and condition.

Other characteristics: https://gisweb.albemarle.org/gisdata/CAMA/CityView_View_OtherParcelCharacteristics_
TXT.zip This file contains other parcel information that is managed in our development tracking system
(e.g. Zoning, School Districts, Jurisdictional Areas, etc.).

1

http://www.albemarle.org/department.asp?department=gds&relpage=3914Parcels
https://gisweb.albemarle.org/gisdata/CAMA/GIS_View_Redacted_ParcelInfo_TXT.zip
https://gisweb.albemarle.org/gisdata/CAMA/GIS_CardLevelData_new_TXT.zip
https://gisweb.albemarle.org/gisdata/CAMA/CityView_View_OtherParcelCharacteristics_TXT.zip
https://gisweb.albemarle.org/gisdata/CAMA/CityView_View_OtherParcelCharacteristics_TXT.zip

install.packages("tidyverse")
install.packages("lubridate)
library(tidyverse)

-- Attaching packages --- tidyverse 1.3.0 --

v ggplot2 3.2.1 v purrr 0.3.3
v tibble 2.1.3 v dplyr 0.8.4
v tidyr 1.0.2 v stringr 1.4.0
v readr 1.3.1 v forcats 0.4.0

-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

library(lubridate)

##
Attaching package: 'lubridate'

The following object is masked from 'package:base':
##
date

ourGoal <- read_csv("data/albemarle_homes_2020.csv")

Parsed with column specification:
cols(
.default = col_double(),
tmp = col_character(),
usecode = col_character(),
condition = col_character(),
cooling = col_character(),
lastsaledate1 = col_character(),
esdistrict = col_character(),
msdistrict = col_character(),
hsdistrict = col_character(),
lastsaledate = col_character(),
condition2 = col_character()
)

See spec(...) for full column specifications.

Reading in our TXT Files

card_raw <- read_tsv("data/GIS_CardLevelData_new.txt")

2

Parsed with column specification:
cols(
.default = col_character(),
CardNum = col_double(),
VisionID = col_double(),
BID = col_double()
)

See spec(...) for full column specifications.

parcel_raw <- read_tsv("data/GIS_View_Redacted_ParcelInfo .txt")

Parsed with column specification:
cols(
.default = col_character(),
LotSize = col_double(),
LotSizeJan1 = col_double(),
LastSalePrice = col_double(),
Cards = col_double(),
UniqueField = col_double()
)
See spec(...) for full column specifications.

other_raw <- read_tsv("data/CityView_View_OtherParcelCharacteristics.txt")

Parsed with column specification:
cols(
.default = col_character(),
CensusBlockGroup = col_double(),
CensusTract = col_double(),
LandUsePrimaryStructuresNumber = col_double(),
LandUsePrimaryDwellingUnitsNumber = col_double(),
LanduseSecondaryStructuresNumber = col_double(),
LandUseSecondaryDwellingUnitsNumber = col_double(),
LanduseMinorStructuresNumber = col_double(),
LandUseMinorDwellingUnitsNumber = col_double()
)
See spec(...) for full column specifications.

Data Investigation

Before beginning making changes, we need to identify what we want in the end. We want to be able to look
at the value of the house (parcel), the actually makeup of the house and land (card), and other pertinent
information about the area in which the house resides (other). We are going to start by looking at the card
dataset to see which variables we want to keep in regards to the house/land.

Use the following functions to look for variables we want to keep or drop.
names(card_raw)
glimpse(card_raw)

3

There are a few things to note here. First, we want to make sure we keep the TMP variable since that is how
we will join it to other datasets. Second, there is a lot of information here, perhaps more than we need.
Finally, all the data was read in as character data, even things like number of stores and total rooms. We
will want to change that.

The first and second tasks we can complete right now by using hte select function.

After looking through the variables, we pick out the ones that we want (Would also use a codebook, etc, to figure out the variables we want). We could set all of this in a select function or we can create a vector to put inside of a select function.
vars <- c("TMP", "CardNum", "YearBuilt", "YearRemodeled",

"UseCode", "Condition", "NumStories", "FinSqFt", "Cooling", "FP_Open", "Bedroom", "FullBath", "HalfBath", "TotalRooms")

We can now use the vector we created above as input into our select function.
card <- card_raw %>%

select(vars)

Using Mutate to change/add things to your dataset.

So, we’ve already culled our card dataset down from 35 to 14 variables. However, we still have some issues
with all the data being characters and a few other issues. To make changes to your data, like adding a new
variable/column or changing the variable type, we will be utilizing the mutate function.

However, we are simply going to make a small change at first by using mutate to add a simple column.

#Let's make sure that we know what dataset our data is coming from.
card <- card %>%

mutate(source = "card")

Now that we have started on our card dataset, we are going to move over to the parcel and other datasets
and go throsugh similar motions.

glimpse(parcel_raw)
glimpse(other_raw)

Exercise

I have selected the variables below for you to keep in our two datasets.

parcel_vars <- c("ParcelID", "Owner", "LotSize", "PropName", "LandValue", "LandUseValue", "ImprovementsValue", "TotalValue", "LastSalePrice", "LastSaleDate1", "Cards")

other_vars <- c("ParcelID", "ESDistrict", "MSDistrict", "HSDistrict" , "CensusTract")

I want you to:

1. Create two new datasets parcel and other by selecting the chosen variables from the raw datasets

parcel <- parcel_raw %>%
select(parcel_vars)

other <- other_raw %>%
select(other_vars)

4

Then:

2. Add variables to parcel and other naming the source of the data.

parcel <- parcel %>%
mutate(source = "parcel")

other <- other %>%
mutate(source = "other")

3. There is no question 3. . .

Turning many into one (the power of the merge)

We now have 3 datasets with the variables that we want. We’ve gone from having over 110 variables to
around 30 variables. Now, the goal is to take our 3 datasets and create 1 dataset that we will work on
moving forward. To do this, we are going to use a series of merges using join functions. There are several
types of join functions in R, all depending on your specific needs.

There are several types of joins (merges) that we can use. The one you use depends upon your specific needs.

inner_join(): return all rows from x where there are matching values in y, and all columns from x and y. If
there are multiple matches between x and y, all combination of the matches are returned.

left_join(): return all rows from x, and all columns from x and y. Rows in x with no match in y will have NA
values in the new columns. If there are multiple matches between x and y, all combinations of the matches
are returned.

right_join(): return all rows from y, and all columns from x and y. Rows in y with no match in x will
have NA values in the new columns. If there are multiple matches between x and y, all combinations of the
matches are returned.

full_join(): return all rows and all columns from both x and y. Where there are not matching values, returns
NA for the one missing.

However, before attempting to join our data, we need to investigate the variable we are going to use to
uniquely identify observations in each of the datasets.

n_distinct(card$TMP) #Multiple cards are possible, so duplicates are ok.
n_distinct(parcel$ParcelID) # Checks out
n_distinct(other$ParcelID) # Almost Checks out

Quickly checking on those duplicates in other
tmp <- other %>% group_by(ParcelID) %>%

summarize(dups = n()) %>% filter(dups > 1)
other %>% filter(ParcelID %in% tmp$ParcelID)
They should not be trouble in our merge

We are going to start by combining our parcel and other datasets together. Since there, in theory, only
one parcel in each of the datasets, we are going to use a one-to-one join where a Parcel in one dataset should
only match up to one row in the other dataset.

5

#We are going to use a left join to join parcel and other together. If a match is not found, then observations from other will be dropped, where all observations from parcel will be kept.
parcel_other <- parcel %>%

left_join(other, by = "ParcelID")
#We now have 47856 observations and 17 columns

View(parcel_other)
Let's sort out the source.x, source.y fiasco. If two columns exist with the same name in two datasets, then you will get variable names like this denoting which dataset the variable comes from.

parcel_other <- parcel_other %>%
select(-source.y) %>%
select(everything(), "source" = "source.x")

We are now going to take the card dataset and merge it onto the combined parcel dataset. Since the card
dataset can have multiple observations that belong to a single parcel, this will be considered a many-to-one
join. We are going to use a full-join for this merge, as we want to keep all data, matching or not.

#We could rename TMP to parcelID, however, you can also handle the differences in primary key names as follows.
homes <- card %>% full_join(parcel_other, by = c("TMP" = "ParcelID"))

#We now have 51,823 observations and 30 variables.
#You can check the result of the merge by looking at the source.x and source.y variables. If missing, then no matching parcel was found.

homes %>%
filter(is.na(source.x)) %>%
tally() #Shortcut for summarize(n())

#We have 9124 observations that are only found in the parcel dataset
#Most of these missing end up being because of 0 improvements.

homes %>%
filter(is.na(source.y)) %>%
tally()

#We only have 1 observation that was in the card dataset and not in the parcel dataset.

#Let's do a final filter here and get rid of the source.x and source.y columns.
homes <- homes %>%

filter(!is.na(source.y) & !is.na(source.x)) %>%
select(-c(source.y, source.x))

#51823 observations. Still around 20000 observations away from our goal dataset. More to do!

Details, details, details.

Now the tedious work begins. This is where we have to go through and ensure that the data we have is in
the shape and form that we want it to be in. One way to start is just to investigate the data as we did
before.

names(homes)
glimpse(homes)

One thing we could do, if desired, is change the variable names to all lower case. This could, in the future,
make it a bit easier to minimize mistakes when mis-capitalizing variable names.

6

#To change the case of variables names and/or values we can use the str_to_lower(), str_to_upper(), str_to_title() or str_to_sentence() functions
str_to_upper(names(homes))
names(homes) <- str_to_lower(names(homes))
names(homes)

str_to_sentence("HERE Is an example")
str_to_title("HERE Is an example")

We are close on the variables, but we still have some cleaning up to do in regards to the value of our variables.

Here are a few things we have (make believe with me) identified as important for our data.

1. We only want residential homes records (not businesses, apartment complexes, etc.).
2. We want properties with individual households own and can accrue wealth or properties that can be

rented to individual households

homes %>%
count(usecode) %>%
print(n = Inf)

#Now search through all the values and pick out the right one, I'll wait...
#or you can just use these values.
res <- c("Duplex", "Single Family", "Single Family-Rental")

#We can use the res vector much like we do with a select, however, this time it will be in a filter statement since we are looking for specific observations.

#The %in% operator allows you to look for a series of values, instead of having to use multiple ORs.
homes <- homes %>%

filter(usecode %in% res)

#We are not down to less than 34000 observations.

Much earlier, I mentioned about the issue with all of our variables being seen as character variables. This
obviously is not ideal, so we need to use a special version of mutate to handle our mis-classified variables.

This will look quite similar to the use of %in% above. We create a vector of variables we want to change and
then we use the mutate_at function to change them.

#We could go wild and change every variable to a number, but that may not look right.
homes %>%

mutate_if(is.character, as.numeric)

#It is better to have a bit of control and use a specific list of variables.
numvar <- c("yearbuilt", "yearremodeled", "numstories", "finsqft", "bedroom", "fullbath", "halfbath", "totalrooms", "landvalue", "landusevalue", "improvementsvalue", "totalvalue","lastsaleprice")

homes <- homes %>%
mutate_at(numvar, as.numeric)

#This function also works well for converting variables to factors. Factors provide discrete levels to variables and are necessary in certain contexts in R.
facvar <- c("condition", "cooling", "esdistrict", "msdistrict", "hsdistrict", "censustract")

homes <- homes %>%
mutate_at(facvar, as.factor)

7

#Finally, to make life easier on ourselves, we want to convert sale date to an actual object. This can be done using a simple mutate function
homes <- homes %>%

mutate(lastsaledate = as.Date(lastsaledate1, "%m/%d/%Y"))

Into the Weeds

For today, the main purpose of this dataset is to look at the total value (totalvalue), the square footage
(finsqft), and lot size (lotsize). Since these are the key variables for us to look at, we need to ensure that
we have very reliable data for these variables.

Let's look at the total value.
summary(homes$totalvalue)
Some numbers jump out, like a 200 million dollar home , 37 missing values, and houses that 0 dollars.

#We know we want to filter out NAs.
homes <- homes %>%

filter(!is.na(totalvalue))

#The ones that are 0 may not be as obvious.
homes %>% # check 0s

filter(totalvalue == 0) %>%
select(usecode, finsqft, lotsize, landvalue, improvementsvalue)

#Let's get rid of those too
homes <- homes %>%

filter(totalvalue > 0)

We can also do something similar to square footage and lot size.

finsqft
summary(homes$finsqft) # 19 NAs, some 0s, and up to up to 34K sqft

homes %>% # check NAs (I want to see the full Owner/Name so save in tmp data frame)
filter(is.na(finsqft)) %>%
select(yearbuilt, finsqft, owner, lotsize, propname, improvementsvalue)

some commercial, or condo-ish (remove below)
homes %>% # check 0s

filter(finsqft == 0) %>%
select(yearbuilt, finsqft, owner, lotsize, propname, improvementsvalue) %>%
arrange(desc(improvementsvalue))

outside of the first 3, these don't seem to have improvements valued
highly enough to be a home (remove below)

check the high end
homes %>%

filter(finsqft > 5000) %>%
select(yearbuilt, usecode, finsqft, totalrooms, owner, lotsize:totalvalue, cards) %>%
arrange(desc(finsqft)) # limit this, e.g, < 10K

some of these are not single family homes (some probably are -- Howie, Jaffray, etc.)

8

remove rows with finsqft >= 10000, = 0, or missing
homes <- homes %>%

filter(!is.na(finsqft) & finsqft > 0 & finsqft < 10000)

lotsize
summary(homes$lotsize)

homes %>% # check 0s
filter(lotsize == 0) %>%
arrange(finsqft)

almost certainly incorrect (given landvalue has positive values), ah well...

homes %>% # check high end
filter(lotsize > 250) %>%
arrange(desc(lotsize))

may farms (also golf course, school, ashlawn, etc.)
... many with mutiple properties on one assessment

remove records with 2 or more cards associated with parcel
homes <- homes %>%

filter(cards < 2)

After running those filters, we now have the same number of observations in our datasets.

Fixing up the rest

This is quite the process, huh? Let’s keep moving. . .

The first thing we are going to do is create an age variable, since we may want to bin things by age.

yearbuilt
summary(homes$yearbuilt)

more likely to use this as age than year, create age of home
homes <- homes %>%

mutate(age = 2019 - yearbuilt)

summary(homes$age)

There are over 952 missing values here, instead of dropping those observations or leaving them missing, we can impute the value based off of other observations

impute median value within census tract for missing
tract_age <- homes %>%

group_by(censustract) %>%
summarize(med_age = round(median(age, na.rm = TRUE)))

#We are going to join the med_age values back to our dataset.
homes <- left_join(homes, tract_age, by = "censustract")

#We can then use an if_else function to fill in those that were missing
homes <- homes %>%

mutate(age = if_else(is.na(age), med_age, age))

9

summary(homes$age) #no more nas

The next step we are going to take is to relevel a factor variable. When we look at the condition of the house,
the factor will automatically set the factor up in alphabetical order. This is fine at times, but sometimes
you want the factor to be ordered in your own specific way.

Looking at the condition of the house
homes %>%

count(condition)

re-order levels of factor by our own defined order
cond_levels <- c("Substandard", "Poor", "Fair", "Average", "Good", "Excellent", "Unknown", "NULL")

We are going to create a new condition variable
homes <- homes %>%

mutate(condition2 = fct_relevel(condition, cond_levels))

summary(homes$condition2)

combine unknown and null into none and relevel
This can be done using the handy fct_collapse function and then using the fct_relevel function and moving these values to the front.
homes <- homes %>%

mutate(condition2 = fct_collapse(condition2,
None = c("Unknown", "NULL")),

condition2 = fct_relevel(condition2, "None", after = 0))
summary(homes$condition2)

The rest of the cleaning done on these datasets is shown below. These tasks tend to be repeats of things we
have done earlier, but they will be good examples for you moving forward.

Run this code chunk:

yearremodeled, numstories, cooling, fp_open, bedroom, fullbath,
halfbath, totalrooms, landvalue, landusevalue, improvementsvalue,
lastsaleprice, esdstrict, msdistrit, hsdistrict, censustract

yearremodeled -> remodel indicator
summary(homes$yearremodeled) # NA not remodeled; not sure about 2 or 8
homes <- homes %>%

mutate(remodel = if_else(!is.na(yearremodeled), 1, 0))

numstories
table(homes$numstories) # realize I don't know what this means; was expecting 1, 2, 3, etc.. Let's drop it
homes <- homes %>% select(-numstories)

cooling
table(homes$cooling) # fix factor -- assume 00, M1, and NULL are no air
homes <- homes %>%

mutate(cooling = fct_collapse(cooling,
"No Central Air" = c("00", "M1", "NULL")))

10

fp_open (these are characters)
table(homes$fp_open) # make a binary indicator, 0 and Null are none
homes <- homes %>%

mutate(fp = if_else(fp_open %in% c("0", "NULL"), 0, 1))

bedroom, fullbath, halfbath, totalrooms
table(homes$bedroom) # 103 homes with no bedroom is a likely error
table(homes$fullbath) # 168 homes with no full bath is a likely error
table(homes$halfbath) # ok
table(homes$totalrooms) # 479 homes with no rooms is a likely error

landvalue
summary(homes$landvalue) # no missing, some 0s
homes %>% filter(landvalue == 0) %>% count(lotsize) # 13 total, only one with 0 lotsize

landusevalue
summary(homes$landusevalue) # no missing
homes <- homes %>% # create binary indicator for land use (land generates revenue)

mutate(landuse = if_else(landusevalue > 0, 1, 0)) %>%
select(-landusevalue) # remove variable

table(homes$landuse)

improvementsvalue
summary(homes$improvementsvalue) # no missing, some 0s

create a tmp file with ImprovementsValue == 0, arrange the file by finsqft
tmp <- homes %>%

filter(improvementsvalue == 0) %>%
arrange(finsqft)

several new buildings with common values (e.g., condo/th dev?)

lastsaleprice
summary(homes$lastsaleprice)
tmp <- homes %>%

filter(lastsaleprice == 0) %>%
arrange(lastsaledate)

first ~ 700 records, last sale date is prior to year built

homes %>%
mutate(datecheck = if_else(yearbuilt > as.integer(year(lastsaledate)), 1, 0)) %>%
filter(datecheck == 1 | yearbuilt == 0) %>%
tally()

suggests yearbuilt (or lastsaledate) is wrong for at least 3472 records

#..................................
Clean up and save ----
remove a few additional variables -- these were for examining the data
homes <- homes %>%

select(-c(cardnum, fp_open, owner, propname, cards, med_age))

We are finally there. If you look at your homes object and compare it to the goal dataset, we should have

11

the same number of observations and variables. If you don’t, don’t fret, this is all just practice. Below, I am
showing a way that you could compare two datasets to see just how well we did.

diff_list <- mapply(setdiff, homes, ourGoal)
names(diff_list[lengths(diff_list) != 0])

#Only differences are from conversions occurring in the csv file and issues with dates. Other than that, all of the observations/columns are the same.
homes %>%

select(tmp, lastsaledate, lastsaledate1) %>%
glimpse()

ourGoal %>%
select(tmp, lastsaledate, lastsaledate1) %>%
glimpse()

Appendix

The following functions were not needed in this workshop, but they are ones that I find useful.

The separate function allows you to separate out several pieces of information stored in a single cell across multiple columns.
For example you could turn 2/26/2020 into 3 columns for month, day and year.
In the example below, we have a Grade column that has both the grade, plus some additional info. Maybe we want those things to be in two separate columns.
head(card_raw$Grade)
card_raw %>%

select(Grade) %>%
separate(col = Grade, into = c("grade", "grade_info"), sep = ": ")
#Essentially, this function is going to split your variable everytime it sees the separator (in this case a colon and then a space)
#If this is of interest to you, look into regular expressions because they can provide for you several tools to break apart your dataset.

The final function I want to show is slightly out of data and has been replaced by the pivot_wider,
pivot_longer functions. However, these functions are currently quite picky about the version of Rstu-
dio you are running and work in quite a similar fashion.
The spread and gather functions allow you to take your data from wide to long or long to wide, reshaping
your complete dataset. There are times where you want to have every observation represent a single thing,
like one state, and have the columns represent a large amount of information, like average house price from
1992-2016. This would make the data quite wide. You also might want to break your dataset into a state-year
format, where you would have many observations and very few columns. This would be a long dataset.

state <- rep(c("VA", "NC", "MD", "WV", "DC"), 5)
year <- c(rep(2012, 5), rep(2013, 5), rep(2014, 5), rep(2015, 5), rep(2016, 5))
value <- c(round(rnorm(n = (5*5), mean = 200000, sd = 50000), 0))

#This will be considered a long dataset
house_long <- as.data.frame(cbind(state, year, value))
house_long

#Let us now create a wide dataset using the spread function
house_wide <- spread(data = house_long, key = year, value = value)
house_wide

#We can take it back to long using the gather function
gather(data = house_wide, key = "year", value = "value", c(2:6))

12

	Before we get started
	Set R Global Options

	Today's class
	Albemarle County Office of Geographic Data Services
	Real Estate Information - Parcel Level Data
	Real Estate Information - Card Level Data
	Reading in our TXT Files

	Data Investigation
	Using Mutate to change/add things to your dataset.
	Exercise
	Turning many into one (the power of the merge)
	Details, details, details.
	Into the Weeds
	Fixing up the rest
	Appendix

