Notice there are two factor variables: x1 and x2. But also notice I use the interaction() function to create a single variable called x12.
n <-200x1 <-sample(x = letters[1:2], size = n, replace =TRUE)x2 <-sample(x = LETTERS[4:5], size = n, replace =TRUE)y <-10+ (x1=="b")*3+ (x2=="E")*4+ (x1=="b")*(x2=="E")*-4+rnorm(n = n, mean =0, sd =3)d <-data.frame(y, x1, x2, x12 =interaction(x1, x2)) # show a few rowsd[sample(200, size =10),]
y x1 x2 x12
92 14.451262 b D b.D
152 9.541859 a D a.D
121 6.362552 b E b.E
104 7.016574 a D a.D
99 8.579846 b E b.E
85 15.329268 a E a.E
164 14.049043 a E a.E
145 13.979861 b E b.E
166 10.234367 a D a.D
171 17.494604 a E a.E
Fit model using main effects and interaction
Notice the last line of output, the omnibus F test. Null is all coefficients (except intercept) are 0.
m <-lm(y ~ x1*x2, data = d)summary(m)
Call:
lm(formula = y ~ x1 * x2, data = d)
Residuals:
Min 1Q Median 3Q Max
-8.4024 -2.0411 -0.2701 1.7720 10.7515
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.0287 0.4336 23.128 < 2e-16 ***
x1b 2.6144 0.6132 4.263 3.13e-05 ***
x2E 4.7935 0.6487 7.389 4.16e-12 ***
x1b:x2E -5.0409 0.8888 -5.672 5.01e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.127 on 196 degrees of freedom
Multiple R-squared: 0.2203, Adjusted R-squared: 0.2084
F-statistic: 18.46 on 3 and 196 DF, p-value: 1.371e-10
Fit model using only the x12 variable
This is basically a one-way ANOVA using a variable that is an interaction of two factor variables. Notice the last line of output, the omnibus F test, is equivalent to the previous model.
m2 <-lm(y ~ x12, data = d)summary(m2)
Call:
lm(formula = y ~ x12, data = d)
Residuals:
Min 1Q Median 3Q Max
-8.4024 -2.0411 -0.2701 1.7720 10.7515
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.0287 0.4336 23.128 < 2e-16 ***
x12b.D 2.6144 0.6132 4.263 3.13e-05 ***
x12a.E 4.7935 0.6487 7.389 4.16e-12 ***
x12b.E 2.3670 0.6075 3.896 0.000134 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.127 on 196 degrees of freedom
Multiple R-squared: 0.2203, Adjusted R-squared: 0.2084
F-statistic: 18.46 on 3 and 196 DF, p-value: 1.371e-10
pairwise comparisons
Posthoc pairwise comparisons are identical for both models.
contrast estimate SE df t.ratio p.value
a D - b D -2.614 0.613 196 -4.263 0.0002
a D - a E -4.794 0.649 196 -7.389 <.0001
a D - b E -2.367 0.608 196 -3.896 0.0008
b D - a E -2.179 0.649 196 -3.359 0.0052
b D - b E 0.247 0.608 196 0.407 0.9771
a E - b E 2.427 0.643 196 3.772 0.0012
P value adjustment: tukey method for comparing a family of 4 estimates